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SUMMARY

The propagation of a laser beam in an optically dense medium such
as a fog, dust storm, or smoke, is a problem of growing importance, both
for communication and detection purposes. Although such <d2nse media
lead to a significant attenuation of the primary beam, much of the
scattered radiation may still be found close to the beam axis and will,
thus, be available for detection by a suitable detector. 1In this report
we examine the spreading of a laser beam using the small-angle scattering
approximation to the equation of transfer. This approximation, which
assumes that most photons travel essentially parallel to the beam axis,
has also been used to study the propagation of fast charged particles
through metal foils. It appears to be equally suited to the study of
the propagation of beams of visible or near infrared light through media
such as fog, dust or smoke, where the scattering phase function is
highly anisotropic.

This equation of transfer may be solved in closed form by the use
of Fourier transform techniques. The resulting expressions are simplest
for the radiance, or alternately the power received by a coaxial detector,
rather than for the irradiance. In view of the assumptions involved in
the small-angle approximation, it is the radiance which is of more
interest anyway. The resulting expression involves a single integral
from zero to infinity; the appendix outlines the procedure for its

numerical evaluation.



In keeping with the approximate nature of our solution, and in order
to fully exploit its mathematical simplicity, we have chosen simple analytic
models for the forward peak of the scattering phase function, rather than
using Mie theory. As well as the well-known Gaussian functional form, we
also examine some exponential and binomial models. Our computational
results indicate that, provided the parameters of the models are suitably
selected, there is little to choose between the models, with the exception
of the sea-water model, which we do not recommend.

Despite the relative simplicity of the expressions that we obtain, a
number of authors have resorted to further approximations, in order to
extract even simpler results. The method of Dolin and Fante starts by
separating the scattered and unscattered beams. In the case of a
Gaussian phase function, this method leads to a single finite integral,
which shows reasonable agreement with our results. The method of
Arnush and Stotts is essentially a low-frequency approximation, which
yields reasonable results well away from the beam axis but leads to
unphysical results close to the axis. The method of Tam and Zardecki
involves a series expansion of our integral leading to a series of
multidimensional finite integrals; it is applicable to both radiance
and irradiance (which is its main advantage), though only for the

Gaussian phase function.

vi



1.0 INTRODUCTION

If a relatively narrow beam propagates in a scattering medium, photons
are constantly removed from the beam. However, if the scatterers are of
a size egual to or greater than the radiation wavelength, such as in the
case of smoke, dust or fog particles compared to visible wavelengths, then
most scattering events will result in a comparatively small deflection of
the photon. This may lead to a gradual spreading of the original beam, both
in thickness and angle.

In this report we examine the broadening of a laser beam, and the signal
that may be detected, as functions of both experimental gecmetry and the
properties of the scattering medium. We shall employ the small-angle approxi-
mation to the equation of radiative transfer, which ignores photons which
have suffered large deflections as they will be assumed lost. In order to
obtain tractable answers, it will prove necessary to assume simple analytic
forms for the scattering phase function and the initial beam profile. Never-
theless, the analysis presented in this report will be as free as possible

of unnecessary approximations.

2.0 EQUATION OF TRANSFER IN SMALL-ANGLE APPROXIMATION
Let I(z, g, ﬁ) ayv dﬁ be the intensity of radiation (or the number of
photons) in a volume element dy centered at the point z, r = (x, ¥), and
travelling within a cone of solid angle dfi centered about the direction f.
Then I satisfies the equation of radiative transfer, which we may write

(Refs. land 2):

[ﬁ .V o] Iz, £, ) =w o f P(A . fi') I(z, ¢, A") &A’ (1)
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where 0 is the extinction coefficient (km )

wo is the albedo of single scattering

1

Y = cos ~ (A . i) is the scattering angle

and P(Y) is the scattering phase function

Even allowing for cylindrical symmetry about the axis of propagation
(the z axis), Eq. (1) is exceedingly hard to solve, even numerically. However,
since the diameter of our detector will always be small compared to the total

propagation distance, we may safely assume that all photons which are eventually

detected will have spent their flight time travelling essentially parallel to

A = 1 whaovrae 8 ia +h
~ - Ly wililcliLo VvV Lo wil

1]
EJ
)
..-I
[0

We may thus set cos
with the z axis.

Note that this approximation ignores the contribution from all photons
which undergo at least one large—-angle scattering event. All such
photons will clearly need to undergo at least a second large-angle scattering
event, and maybe even a third, in order for them to reach the detector. As
we are assuming that the phase function, P, is strongly forward-peaked, the
probability of two or more large-angle scatterings is clearly very small,
and thus the neglected contribution will be small.

The main effect of this assumption is to replace the unit propagation

vector by

3=

= (n, n )» (1, n) , (2a)

~1. ~L
Although this new propagation vector is no longer correctly normalized, this

should not cause any problems, as the number of photons for which ln l << 1

is not true will clearly be small.



The second effect is that we may use - gi as the argument of P

~ |

in Eq. (1), i.e.,

- n') . (2b)

P(h +n') > P(n

i A
The third effect is to replace the limits of this (two-dimensional) integral

by + . With these points in mind, we may now rewrite Eg. (1) as

=w_ O f JP(n -n') I(z, r, n')dn'. (3)
~1 L ~ L

(§E'+ n . éi-+ 0) I(z, r, 2

n )
Lo RTINS

Equation (3) is referred to as the equation of radiative transfer in the
small-angle approximation. Its main advantage over Egq. (1) is in the simplification
of the directional derivative. This equation has been used extensively in the
theory of foil penetration by fast charged particles (Refs. 3, 4 and 5). Though

Wentzel (Ref. 3) was the first to use the small-angle approximation for charged

particle transfer, perhaps the first person to employ this equation in the field

of radiative transfer appears to be Dolin (Ref. 2).
One further result of the small-angle approximation is that all detected
photons are assumed to have travelled the same distance. Thus their time of

travel is constant, and a pulse will undergo no time-dispersion.

3.0 FORMAL SOLUTION IN THE SMALL-ANGLE APPROXIMATION
Equation (3) may be solved, at least formally, by the use of Fourier

transform techniques. Introducing the definitions
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E(Z,D: g) = (2’!T)_2 J IJJ I(=z, r, {,IJ.) el(n.f + ?,'21) dr dn.L (4)
i&E-n
and B(§) = (21T)'l fmf Pn)e ~ dLan , (5)
2 ~L ~L
-0
we take the double Fourier transformof Eg. (3) to obtain (Ref. 2)
fji-- n 2o I(z, n, £§) =21 w o B (§) I(z, n,8) . (6)
az . . ag r ~I 2 o 2 14 ~I~
Equation (6) is easily solved, to yield (Refs. 2, 5)
A n - 0z + Q
I(z, n,&) = IO(D, g + z D) e (7)
where
z A
=0 (§, n =27 w O [ P (| + z' nl) az' (8)
o 2

and Io(n, £) is the Fourier transform of the initial intensity distribution

(incident beam profile) at z = 0.

To obtain the intensity distribution at any point in the medium, it is

merely necessary to re-transform Eq. (7) (Refs.6 and 7)

* -i(n.xr+§& .n)

I(z, r, §L) = (21T)_2 J J [ J I(z, n, g) e ~L dn dg . (9)



The principal difficulty with this procedure is the evaluation, and
subsequent exponentiation, of the function . Evaluation of  in the case of

a real (Mie) phase function would appear to be prohibitive, and we shall employ

instead a number of simpler anaiytic functions for P (described in later sections).
However, even with such simplifying assumptions, many authors have still foun<

it necessary to employ further approximations in order to obtain tractable

>
—~
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expressions Eg.
Before we proceed to specific examples, however, we remind ourselves that
it is irradiance (flux density) and received power, rather than radiance, which

is of concern to us in this study. Using the relation between irradiance, N,

and radiance, I, we may simplify Eq. (9) (Refs. 2 and 6).

.
N(z, r) EJ I(z, r, nl) ['{:1 . %] dn

2T
~ 'I(z, r, n ) dn (10)
[Jeoen o
= J J Tz, n, 0) e "X an . (11)

With the elimination of &£ in Eq. (11), we may simplify Egs. (7) and (8):

~ -0z + Q

I(z, n, 0) = IM, zn e °© (7")



: z
where Q_ = 2T WO J ﬁ(lz' nl) az' . (8")
o o Jg o~

Equation (11) can now be further simplified by an appeal to symmetry. Since

~1

similarly be a scalar function, as will QO. Similarly, if we assume that the

P(P) clearly depends only on the scalar ln I, and not on the vector n , P will
~1

incident beam profile is circularly symmetric, then IO(Q, z Q) will also be

a scalar function of n. Thus f(z, n, 0) will be a scalar function, and Eq. (11)

becomes

N(z, r) = 27 J Jo(n r) E(z, n, 0) ndn . (11")
- 0

From Eq. (11') we see immediately that N is a scalar function of r, as we
would expect from the above symmetry arguments. A more tractable expression
for the case of a §-function beam will be given in Eg. (31).

In most instances, of course, what we are most interested in (and what
we physically measure) is the power received by some detector. This will
involve the integration of Eq. (11') over the area of the detector, perhaps
modulated by a response function. If we assume a coaxial, circular detector

of radius R, with a flat response, then we have

R
P(z, R) = 2T J N(z, r) r dr
0

00
= 4ﬂ2 e_Gz J Jl(n R) Io(n, z7n) e °Rdn . (12)
0



This result should prove amenable to numerical integration, especially if
a relatively simple expression for Qo can be obtained. Sample results will
be presented ‘below.

One useful result which can be obtained analytically, is the total power

crossing a surface z = constant:

£C0 o
P(z, =) = J J N(z, r) dar
-0
0 .
=JJ [JI(Z, n, 0) e 3" % anar
—oo
2/\
= 47" I(z, 0, O)
5 A -0z + 2M W O z B(0)
=4m I (0, O) e
o
-(1 - wo) oz
=F e (13)
o
where F0 is the incident total power, and we have used the fact that 5(0) = (2ﬂ)_l.

From Eq. (13) we see that the only energy removed from the beam is that lost
by absorption -- i.e., there is no backscatter.
One further parameter which will often prove useful is the beam spread,

which we may define as

<r2> = f” N(z, r) r3 dr / fw N(z, r) r dr
0 0

-1 (1- wo) oz 3
= 27 F e Jm N(z, r) ¥  dr . (14)
© 0



4.0 EXACT SOLUTION FOR GAUSSIAN BEAMS
At the entrance to a scattering medium, a laser beam profile can often
be adequately represented by a Gaussian functional form, both for the radial

distribution, and the angular divergence. Thus we have

2 2 =2 2 2 2 2
Io(f' EL) = Fo B v m ” exp(-B QL -y r). (15)

This may be easily transformed, and, :in particular, we have
o -2 2 2 2 2 2
I, zn) =F (2m) ~exp(-n /4y -z n/4 B™) . (16)

In general, the laser beam profile will be well collimated, so that B and Yy
will be large. The inclusion of Eg. (16) in Eg. (12) will in no way complicate
the numerical integration, though in our examples later we will allow both to
go to infinity, so as to reduce the number of parameters whose influence should
be examined. 1In all practical calculations, however, realistic values of both

parameters should be included.

4.1 Gaussian Phase Functions

A Gaussian functional form is also often employed to describe P(Yy), since

exact Mie theory is clearly somewhat impractical. Thus we choose to write

2,2
p) = 20 eV ,on. (17)



The o is an adjustable parameter, which controls the shape of the forward peak,

. ) 2 .
and is related to the rms scattering angle Y defined as

v? = 2r f Py ¥ Ay . (17a)
0

It is easily shown that for the Gaussian case

Y =a . (17b)

(Though o will usually be large, it will rarely, if ever, be as large as

B or Y.) Taking the Fourier transform of Eq. (17), we find

BE) = j J(E Y PW) Y a (5")
o ©
2 2
e'E /4 a / 2w (18)
and hence Qo = moo n—la /T erf (zn/20) (19)

where erf is the well-known error function.

Substituting Egs. (16) and (19) into (12) we find

p(z, R) = F_R r I (MR exp [wo n L o Vi erf (zn/20)
o 0 1 o

2

-0z -n%/ay* - 22 n%/a 8% an . (20)
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Equation (20) is an exact equation, which is solved numerically for various
values of B and Y. Here, we make a simplification in Eg. (20) and consider
the limiting case of B, Y > ®. This physically implies that the beam is

collimated and has zero width in space. Then by making the variable changes

T =02
T =W T
s o
—5-1/2
G =R/z (V)
(21)
X =nR
Equation (20) can be reduced to
_T * -
P(z, R) = FO e JO Jl(X) exp fTs v Gy L erf (X/2G)] dy - (22)

The power of the unscattered beam at an optical depth of T is, of course,

Fo e _T. Thus, the presence of forward scattering has increased the detected

power by the factor

loe}

A(Ts, G) = J Jl(X) exp [%s YT G X_l erf(X/Zéﬂ ax . (23)

0]

A, which we call the amplification factor, is a function of two parameters;

Ts' the scattering optical thickness, and G, the geometry factor.
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Finally, we may obtain the beam spread by substituting from Egs. (11l) and

(16) into Eq. (14):

<r?> = Tg 22/30L2 + 22/82 + Y—2- (24)

In general, the first term should dominate, except perhaps close to the

4.2 Non-Gaussian Phase Functions

Although the Gaussian form in Eg. (17) is a popular model for the
forward peak of the phase function, it is often a good idea to examine other
models, to make sure that none of the results are simply an artifact of the
Gaussian model. 1In this section, therefore, we shall examine a number of
other functional forms which may be (and have also been) used to model
anisotropic phase functions. We shall follow essentially the same steps as
in the previous section, and present only the results, unless further

explanation is necessary.

4.2.1 Exponential Phase Functions

i) P(y) = a2 e @ l’(’/27; (25a)
P(E) = o2 + £5732 , on (25b)
_ 2, -1/2
Qo T (L + y“/6) (25¢)
where
y =z va = X6 - (26)
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Thus -
AT, ©) = J 3 (X) exp [}5(1 +%X%/6 Gz)—l/z] day (254d)
and 0
<r2> = 2 Ts z2/0!.2 + 22/82 + Y-2 (25e)
.. -1 -avy
ii) P(W) =a Y " e /27T (27a)
B(g) = a? + £572 ; on (27b)
- r 2
8 =ty Yin [yvz e 1+ %—y y 1727 . (27¢)
Hence o
A(T_, G) = J TL00 exp{’fs /Z_Gx_l 1n E(/G V2 + (1+%—X2G_2)l/2:”dx (274)
0
2 -
> =21 22 302 + 2% /8% +y2,
Note that, although Egq. (27a) implies P(0) = %, the inclusion of the correct

solid angle factor leads to a finite result for the amount of light scattered
through any angle. In fact, Eg. (27a) has been employed by Bravo-Zhivotovskiy

et al. (Ref. 6) to model the phase function of sea water.

4.2.2 Binomial Phase Functions

This time, we consider phase functions based on the functional form

2.2 -u -1

(1 +ay) We will need the result that

2. -u-1

J Jo(nw) (1 + azw ) Yy = (n/2a)™ 1<.u n/a) / azF(u + 1) (28)
0

where KU is the modified Bessel function of the second kind. Thus if
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P =2u0’ 1+ o2y Mt/ an | C (29a)
ﬁu () = (g/za)“ Ku (E/a) /m T () (29b)
Q =t AT+ [k (L I+ K_ &L )]/ T (29¢)
o s 2 u H-1 =1 H

where y' = yvu-1l

and Lu is the modified Struve function of order .

The expression for A may be easily written down. For U > 1, we may

obtain the beam spread:

2

2 2 2 2,2 -
<r>=T_2z /30 (M -1) +z2/B vy 7, (29d)

Note that if U is an odd half-integer, Eq. (29¢c) may be expressed in terms

of exponential functions. For example, for U = 3/2 we find

90(3/2) = Ts {2 V2 y—l - e—y//i (1L + 2 V2 y—la (30)

AT, G) = r 3,00 exe { T [2/2-GX_1—e_X/G/§<1+2 /2 ax H]¥ ax . (30
0
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4.3 Beam Profile

The spreading of a laser beam in a forward-scattering medium can be
most simply described via the beam spread parameter, <r2>, which we have
derived above. However, the profile of the expanding beam is also of interest
and will now be considered.

The formal expression for irradiance versus distance from the axis is
given by Eg. (11'). In most cases, this expression is well-behaved. However,
in thé special case of B, Y > ©, Eq. (11') will diverge. An alternative
expression for N(r) may be obtained either by an integration by parts of Eq. (11')
or by differentiating Eg. (12). Adopting the second approach and setting

~ —2 .
I =F (2m) =, we obtain
o o

1 dp
N =R &R
o Q
-1 -2 -
=-(@2m *F r ‘e’ J I () e ° Q' y dy (31)
o} 0 1 o
where the prime denotes differentiation of QO with respect to y (Eg. 26). With

. . -1
the exception of the sea-water phase function, QO goes as y for large y, and

. -2 .
so Qo goes as y , and convergence is assured.

5.0 APPROXIMATE SOLUTIONS

In an effort to simplify the above analysis, several authors have
employed a number of approximations. In this section we shall examine two

of these approximations, neither of which appears to be particularly useful

in our problem.
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5.1 Dolin~Fante Method

Dolin (Ref. 8) and Fante (Ref. 9) have argued that the angular shape of
the scattered intensity should be a much more slowly varying function than
P(y), and have thus extracted it from the integral on the right side of Eq. (3).
After separating the scattered intensity from the unscattered, and Fourier

transforming, they arrive at the following expressions

~ -0
Iu(zl I]I 9) = e z IO(T], z n) (32a)
A z z
and I°(z, n, 0) = I (n, z n) J dz' exp [- 0 z' - J Alt, n, z 1) dt]
T °~ ) z'
*wpo PIn(z-2"] (32b)
1 2 2
where Alt, n, 2n) = 7 w0 U] lz n - tn‘ + (1 - wo)o (33a)
z 1 22
f A(t,D,zD)dt =17 WO n(z - z')3 + (1 - wo) o (z - z') (33b)

Z

and w2 is defined by Eq. (1l7a).

Equations (32) and (33) may now be inserted in Egs. (11) or (12) as required.
Although P is no longer exponentiated, this result is complicated by the
additional (finite) integration over z'. In the case of a Gaussian phase
function, it is possible to reverse the orders of these two integrals, and
perform that over n, to give

w T !

2.1 3 2
A=e°—wT[dtexp[th-G/(gont+t)]. (34)
(@] 0 o
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Our calculations show that this approximation is reasonably accurate,

except in those situations where T is large and G is small. In section 7

(Numerical Results), we will compare the predictions of Eq (34) with those
of Eq. (23). As it is not possible to perform any of the integrals for
any of the other phase function models, we have limited our examination

of this approximation to the case of the Gaussian phase function.

5.2 Arnush-Stotts Method

In order to extract analytic answers, Arnush (Ref. 10) and Stotts
(Ref. 11, 12) have expanded P to second order before performing the integration

to obtain {. (Series expansion of { would yield the same result.) Arnush

has used Bravo-Zhivotovskiy's (Ref. 6} sea water phase function, Egq. (27a),

while Stotts originally used a Gaussian phase function, Eg. (17), and more

recently the sea water phase function. This approximation is sufficient

to provide the correct values for both P(z,®), and <r >.

We start by re-writing the definition of Qo as follows

ko]
Il

.1 Nz
2m wo oz (nz) J P(r) at
0]

-1 (M2
2T W o0z (nz) 1 [
o JO

J J (tY) P(Y) ¢ dY dt . (35)
0 (o]

Expanding Jo as a power series leads to

2272
Qo=w002(1—nz w12 + L L) (36)

2
where 1~ is defined by Eq. (17a).
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It is complicated, but reasonably straightforward to obtain the following

expression for the beam spread parameter:

372 2,.2 -2
<r2>=—§—w002 xp2+z/B +v . (37)

Ignoring the higher order terms in Eg. (36}, we may insert this expression

into Eqg. (11') to obtain

2 2 2
N(z, 1) = F_exp [- (1 -w)) T -xr'/«™] /m <™ . (38)
Similarly, integration of Eq. (12) leads to
-1 -w)T 2 2
- <y<>
P(z, R) = Fo e ° [; - e R /<r :] . (39)

Ignoring B and Yy, we may re-express Eq. (39) in more familiar terms

-1 - w)t
P(z, R) = F e ° I:l - exp (-3 G2/TS):[ ’ (39'")
Ts 2
i.e., A(Ts, G) = e [} - exp (- 3G /‘r%] . (40)

Expansion of Qo to second order in y is equivalent to an asymptotic
expansion to second order in G_l, or R_l. Thus we may expect this approximation
to be accurate for large values of G or R. However, its behaviour for small

values of these parameters is quite different from that of the exact results



i8

quoted in previous sections. Thus we cannot expect this approximation to

prove particularly useful for our problem, as shown later by numerical comparisons.

In fact, one finds values of A which are less than unity;

For our problem, of course, we are concerned with small values of R and G,
and hence we are interested in the behayiour of Qo for large values of y, i.e.
its asymptotic expansion. The phase function model of Eq. (27a) does not have
an asymptotic expansion, due to the fact that P(0) = «. For the other cases

we may easily show that

Qo ~ T a/y (41)

where dq =27 J P a&p/a - (42)
0

Thus for a Gaussian (Eq. (17)), q = ¥/7; Eq. (25a) gives g = 1; and Eq. (29a)

~ . . 3
gives g = U B(%, U+ %ﬁ, where B is the beta function. (For u = P for example,

d=2.)
For large values of y, the Arnush-Stotts approximation to Qo goes to

(minus) infinity, and so we cannot expect this approximation to accurately

predict the power received by a small detector.

6.0 EXACT METHOD OF TAM AND ZARDECKI
The method of Tam and Zardecki (Ref. 7) is exact, at least in principle,
but requires the evaluation of multidimensional integrals, the order of which
is equal to ﬁhe order of multiple scattering involved. We will restrict this

discussion to the case of the Gaussian phase function only.
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The Tam and Zardecki method consists in expanding exp (Qo) in a Taylor
series, before performing the integration over z' (Eq. 89. Thus, inserting

Eq. (18) in Eg. (8'), and performing the Taylor expansion, yields

T 4 z m
x S .o e 2 2 2
exp (Qo) =1+ mZ - L) j dz dz  exp { = 121 %5 / 40°} . (43)

m
T
2. -1 S
N(z, r) = F_ e = (T z") Lo o N,z r) (44)
Z2 B2 2 r2 B2 2
- X B Y
where N < 2 P ¥ exp {- } (45)
o 2 2 2 2 2 2
z7 Yy + B z Yy + 8B
1 1
and N = J J gz, "*tdz_ MY exp [-rP/z% A ] (45b)
m 1 m m m
0 0
m
-2 - 2 -2 -2 =2
A = .
where - o igl z; + B + z Y (45¢)

We may note in particular that N, may be evaluated analytically in terms

1
of the error function. The resulting expression is quite complicated, except

in the case where 8 and Y go to infinity, in which case we get

2
N, (z, r) =a” v [1 - erf(g)] / 29 (46a)

where g=1ro/z . (46b)
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Turning our attention to the power received, we obtain an expression
similar to Egs. (44) and (45), viz.
L
-T X s
p(z, R) = F e L —— p (z, R) (47)
o m=0 m! m
2 2 2
where Po = 1 - exp {- -%%—g——l—g} (48a)
z5 Y™ + B
1 1 2
and P = j oo j dz. -+ dz {1 - exp [—R /z° A ]} . (48b)
m 0 0 1 m m

Note that, from Egs. (47) and (48), Eq. (13) may be obtained trivially.
As with N_, P. is also analytic , and in the simple case of B, Y > ©, we obtain

2
P (z, R) =1 - e® +g v [1-erf@)] . (49)

The number of terms required for the convergence of the series in Egs. (44)
and (47) grows steadily with Ts' and so in some cases for large optical thicknesses
it may become prohibitively expensive to use it. Nevertheless, these results
have one use in that Tam and Zardecki (Ref. 13) have shown that the mth order
terms in Eqgs. (44) and (47) correspond to the contribution from mth order
scattering. This in itself is a useful result.

Another use suggests itself, however. The Gaussian phase function is simply

a model, with the parameters O and(no available for adjustment to match "real"
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scattering patterns. Since we now have a simple expression for the singly
scattered contribution, we may compare it with that produced by a real phase
function and adjust 0 and wo accordingly. Then we may use the results outlined
above to estimate the multiply scattered contribution from such a phase
function. Comparisons with second and higher order contributions are also
possible. This should increase our confidence in the worth of results obtained

from a model phase function.

7.0 NUMERICAL RESULTS
In this section, we shall present some typical results based on our exact
formulation and the Arnush-Stotts type approximate method from selected computa-
tional results. We shall examine 4 phase function models: Gaussian (Egq. 17),
both exponential models (Egs. 25a and 27a), and the binomial model with u = 3/2
(Eg. 29a). To simplify discussion, we shall refer to the phase function model

of Eg. (25) as the exponential model, and that of Eg. (27) as the sea-water model.

We start by examining the phase functions themselves. It is, of course,
much simpler to plot the normalized phase function, 5, rather than P, where P

is defined by

B = 21 P /o’ (50)

Unlike P, P is now a function of only one variable, ay. In Figure 1, we plot

P against ay, for 0 S ap s 3.5.
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The next function we examine graphically is Qo. In Fig. 2 we plot
QO/TS against y for all 4 phase functions, as well as the Arnush-Stotts
approximation. From this log-log plot, the asymptotic behavior of the 4
phase functions is apparent, particularly that of the sea-water phase function,
which has no asymptotic expansion. Although it is not obvious from this figure,
the curve for the binomial phase function actually lies slightly above the
sea-water curve for y values less than about 3. Finally, we note that for y
values greater than 2, the results obtained by the Arnush-Stotts approximation

differ markedly from those by our exact formulation, rapidly approaching large
negative values for y greater than 4.

We now turn to a discussion of the amplification factor, A, and the
power received, P, as predicted by these 4 models, and also the Arnush-Stotts
approximation. We have evaluated both A and P for G between 0.0l and 1.0, and
Ts between 0.5 and 15.0. (Throughout, we have assumed B, Y > «.)

In the Appendix to this report, we have included a listing of the FORTRAN
program used to generate this data, along with a brief explanation and sample
output.

In Figure 3 we plot A against G for a series of Ty values, for the
Gaussian model. In Figure 4 we plot P against TS (assuming uhit incident
power) for a series of values of G, again for the Gaussian model. Also shown
on this plot is the transmission, T, which represents the power that would
be received if all scattered light was lost. These two graphs clearly
indicate the important role that forward scattering can play in the detection
of transmitted beams, especially for optical thicknesses of the order of

10 or higher.
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In Figure 5 we plot A as a function of G for Ts = 4.0 and 10.0, for
all 4 model phase functions, for our formulation as well as the Arnusﬁ-stotts
approximation. 1In the latter case, one finds values of A which are less than
unity. Note that the binomial and sea water curves cross for both Ts values.
(cf£. Fig. 2). For large values of G, we see that there is little to choose
between the four phase function models.

In Figure 6, we plot (A - 1.0) against G in log-log form for T = 1.0, in
order to emphasize the linear relationship implied by Eg. (A3) in the Appendix.
We see that for G less than 0.3, the integral term in Eg. (A3) makes a negligible
contribution. In Figure 7, we plot (A - 1.0) against G for T = 5.0. Here we
see that the integral term in Eq. (A3) is starting to make a contribution. Also
in this graph we have included the Arnush-~Stotts and Dolin-Fante approximation
results. The Dolin-Fante result was not included in Figure 6 as it could not

be distinguished from the exact result for the Gaussian phase function.

8.0 CONCLUDING REMARKS

The propagation of a laser beam in an optically dense medium such
as a fog, dust storm, or smoke is a problem of growing importance, both for
communication and detection purposes. Although such dense media lead to a
significant attenuation of the primary beam, much of the scattered radiation
may still be found close to the beam axis and will, thus, be available for
detection by a suitable detector,

In this report, we have examined the spreading of a laser beam using the
small-angle scattering approximation to the equation of transfer. This.
approximation appears eminently suited for the study of beam propagation in

fog, dust, or smoke media, where the scattering phase function is highly
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anisotropic. As well as the standard Gaussian model phase function, three
other model phase functions have also been examined. The Gaussian functional
form was used to-describe the initial beam spread and profile, although the
analysis is somewhat simpler (and the resulting expressions tidier) if the
limiting case is taken.

All the numerical results presented in this paper have been based on
the assumption of a narrow, collimated beam. We may remark, however, that
the results and expressions presented in this report (e.g., Eg. 20) may be

applied with full generality.

We have also examined a number of approximations which have been used to
further simplify the expressions we have derived. The Arnush-Stotts
approximation is quite suitable for use in the asymptotic regions, at large
distances from the beam axis. However, the behavior of the solutions close to

the beam axis is governed by the parameter g, the zeroth moment of the phase

function. This moment weights the contribution from scattering through very
small angles far more highly than does the parameter wz , the rms scattering

angle, or third moment. In fact, for small R (i.e., small G), one may

expand Eq. (23) to first order (cf. Eq. A3)

A(T,6) =1+ T 3G+ . .. (51)

Finally, we may remark that the method proposed by Tam and Zardecki makes
a useful contribution by providing a connection between real (Mie) phase
functions, and the parameters which must be used in the model phase functions

used in this report. Further work on the applications of this method is

recommended.
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APPENDIX: COMPUTATIONAL DETAILS

The numerical results presented in Figs. 3 to 7 were obtained from a
relatively simple computer program, consisting of less than 100 executable
statements. A full listing, and partial output, are included in this
appendix.

The task of this program is to evaluate the numerical integrals in
Egs. (23), (25d4), (27d4) and (30'), for a series of values of TS between
0.5 and 15.0, and a series of values of G up to 1.0. For comparison,
the Arnush-Stotts approximation, Eq. (39), is also computed. We have
included the full results for TS values of 4.0 and 10.0, which may be
read in conjunction with Fig. 5.

Although infinite integrals of this type are often handled by
Gauss-Laguerre quadrature, this method was found wanting, due to the
oscillatory nature of the integrand. Instead we have employed Simpson's
rule, up to a finite cut off, allowing for the remainder of the integral

by the following result:

If
£(x) = ¢ (X)) for x > X
and
J o(x) dx = ® 4is known,
0
then

0 X
J fF(x) dx = 9 + J [£Ex) - o001 ax . (al)
0 0
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To apply this result, we note Eq. (41), and choose X such that

e = 1+ T qaG/X . X> X . (a2)

Thus

g0 eax=1+1_ 36+ | J00 (e%-1-1 6/ &. (A3)

Due to the wide range of values of G which we have used (three orders
of magnitude) it is necessary to vary the step size accordingly. Thus we
have used a step size equal to G, up to G = 0.22, A step size larger than
this is unwise, due to the variation in the Jl term. Thus, when we reach
G = 0.22, a larger set of Jl values is computed and stored, to be used for
the remaining values of G.

As pointed out above Eq. (41), q is undefined for the sea water phase
function, so we have set g = 0 in this case. As a result, we are forced
to choose a considerably higher value of X in order to satisfy Eq. (A2).
In fact, if the sea water phase function was dropped from consideration,
the time (and cost) of these calculations would be cut at least in half.

As it is, the results we have obtained for this phase function must be

considered distinctly less accurate than the others.
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737174

PROGRAM PROP

THIS PROGRA
DISK DETECT
WITH A HIGH
EQUATIDON OF

4 DIFFERENT

1) GAUSSIA
2)  EXPONEN
3)  SEA VAT
4)  BINOMIA

0P T=l FIN 4.b6%652 79106/06. 13,3223

GTN(OUTPUT, TAPESsQUTPUT)

M COMPUTES THE SIGNaL DETECTED BY A COAXIAL
OR WHEN A LASER BEAM HAS TRAVERSED A MEDIUM
LY FORWARD-PEAKED PHASE FUNCTIOMN, USING TiE
TRANSFER IN THE SHALL ANGLE APPROXIMATION.

SCATTERING PHASE FUNCTIONS ARE CONSIDERCD!

N 2HALPHARR2HEXP (~(ALPHAYPS5])442)

TIAL ALPHA®#2%EXP(—~ALPHA#PS])

ER ALPHAXEXP(-ALPHA#*PSI) /P51

L A€ALPHAG# 24 (L+ (ALPHA#PSL }##2 )44 (-5/2)

THE ARNUSH-STOTTS APPROXIMATION IS ALSO COHMPUTED FOR

THESE PHASE
GIVES IDENT

DEFINITIONS
Sp =
X -
DX .
Y [}
G "
TRANS =
OMEGA =
AMP -
SA =
SIGNAL=
AS -
Q =
P [

EXTERNAL SU
8J0R
BJ1R
ERF

FUNCTIONS. (NOTE THAT THIS APPROXIMATION
ICAL RESULTS FOR PHASE FUMCTIONS 3 AND 4)

SQRT(PI)

INTEGRATION VARIABLE

INTEGRATION STEP SIZE

X /76

RADIUS OF DETECTOR * ALPHA / PATH LENGTH (2)

TRANSMITTANCE

INTEGRAL FROM 0 TO Z OF THE FOURIER
TRANSFORM OF THE PHASE FUNCTION

AMPLIFICATION FACTOR

ARNUSH-STOTTS APPROXIMATION FOR ANP

DETECTED POWER FOUR UNIT TRANSMITTED POWER

ARNUSH=-STOTTS APPROXIMATION FOR SIGHAL

PARAMETER IN THE EXPANSION OF OMEGA:
OMEGA = TAU ( 1 = Y*Y /7 Q + seenes )

Q %6 * G/ 4 % TAU

BROUTINES (FROM FTNMLIB)
BESSEL FUNCTION OF ORDER O
BESSEL FUNCTION OF ORDER 1
ERROR FUNCTION

8¢
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50

55

60

65

70

75

80

OO0

(e XeXa)

OO0

[z XgNe]

73174 OPT=l FIN 4.6+452 79/06/06. 13.32.°

DIMENSION B3(2560))SIGNALL4)JAMP{4)sAS(3),5A(03),Q(3),66(20)
DATA SPsDX / 147724538550.05 7/ +1Q / 12.0:2.056.0 /
DATA GG 7 0.0150,025,0:05,0.075:0.1,0412550.15,0.17550.2»
1 06255043206352044504452045504650.7»048,0:951,0 /
X=-DX/2.0

SET UP BB ARRAY OF J1 BESSEL FUNCTIONS

DO 5 1s1,2560
X=X +DX
CALL BJIR(X,BB(I),IER)
5 CONTINUE

ASSUME INTEGRAL FROM 128 70 INFINITY = JO(128.)

CALL BJOR(128.0,TAIL,IER)
WRITE(6510) TAIL
10 FORMAT(S50X,#TAIL =*,F10.5)

DO LOOP OVER OPTICAL THICKNESS, TAU

DO 70 J=1,16

TAU=J~-1

IF(J+EQel) TAU=0.5

TRANS<EXP{~TAU)

WRITE(6515) TAU, TRANS

15 FORMAT(1H1,30X,*0PTICAL THICKNESS, TAU =#,F5.1,10X,*TRANSHIT#*

1 ATANCE w%,E12.45 /730X, %GAUSSTAN%, 20X, #*EXPONENTIAL4,14X,
2 #SEA WATER®, 14X, #BINOMIAL*,//7, 15X, G*, 09X, #EX/ T4, 7X,
3 XAPPROX*, 2(11X y*EXACT*, 7X, 2 APPROX* )y BX)*EXACT*,/)

DO LOOP OVER GEOMETRY FACTOR, G

00 50 L=1,20

Ge=GG(L)

AMP (1) =AMP(2) «AMP(3)wANP (4)eTAIL

X=-DX/2.0

INTEGRAL FROM 0.0 TO 128.0 : 2560 EQUAL STEPS

DO 20 I=1,2560

6c
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PROGRAM PROPGTN 73/74  0PTsl

OO0

20

25

30

35
50

60

70

FTN 4,6+452

XaxX+0X

B1=8B8(I)

YaX/6

CALL ERF(Q.54Y,ERFY)

OMEGA=T AUXSP*ERFY/Y

AP U1)=AMP(1)+BLI*EXP(ONEGA)*DX
OMEGASsTAU/SQRT(1,0+Y%%2)

AMP (2)=AlfP(2)+B 1#EXP(OMEGA) *DX
OMEGA=TAU/Y*ALOG(Y+SORT(1.,0+Y4%2})
AMP (3) = AMP(3)+B14EXP(OMEGA)*DX
OHEGA=2.0#TAU/Y

IF(Y.LT.20) OMEGA=OMEGA-TAU*EXP(~Y)*(1.,0+2.0/Y)
AMP (4} s AMP (4 ) +BL*EXP(OMEGA)*DX

CONTINUE

NOW CALCULATE THE ARNUSH~STOTTS APPROXIMATION
(RESULTS FOR PHASE FUNCTIONS 3 & 4 ARE IDENTICAL)
00 25 I=1,3

PaQ (1)%G*G/4.0/TAU

AS(I)=1.,0-EXP(-P)

SA(I)=AS(I)/TRANS

SIGNAL{T)=AMP(I)#TRANS

CONTINUE

SIGNAL{4) =sAMP (4 ) #TRANS

WRITE(6530) Gr (AMPUI)»SALL1)»1m1,53),ANPL4)
FORMAT(11X,F7.3,3(3X,2613.5),G613.5)
WRITE(6,35) (SIGNAL(I)»AS(I)»I=1,3),SIGNAL(Y)
FORMAT(18X»3(3X»2613.5),613.5)

CONTINUE

WRITE(6,60)

FORMAT (/5 10X, *THE FIRST LINE IS THE AMPLIFICATION FACTOR,

THE +,

*SECOND LINE IS THE RECEIVED POWER (FOR UNIT INCIDENT POWER)¥)

CONTINUE
sTap
END

73/06/C5. 13.32..

o€




TrHz:

100
125
150

175

FIRST LInE IS

OPTICAL THICKNESS, TAU = 4,0

GAUSSIAN

EXACT APPROX
1.0822 «40947E-02
+196822E~01 +T4997E-04
1.23M7 «25587E~01
+22669E~01 468064603
1.5605 .10228
«29582€-01 «18732E-02
1.9597 +22985
«35894E-01 «42099E-02
244258 «40795
W44431E-01 « 76719€-02
249520 63609
«54069E-01 +11650E-01
3.5326 91361
+64702E-01 +16733E-01
46,1625 1.2398

. 76239E-01 +22707E-01
4.8371 1.6136
+88594E-01 229554E-01
£.3035 2.5002
11545 +45793E-01
7.9011 3.5637
14471 SL5272E~01
G.6024 47927
17587 87781E-01
11.383 6.1739
220848 11308
13.220 7.£931
124214 +14090
15.06G4 9.3347
27647 «17097
18,885 12.919
34589 «236062
2246135 16,791
41457 «30754
264253 20.814
48004 .38122
29.673 24,854
54349 «45529
324851 28.308
60169 52763

THE AMPLIFICATION FACTOR,

TRANSMITTANCE =

EXPONENTIAL

EXACT APPROX
1.0427 «68247E-03
«19098€E-01 «12500E-04
1.1177 «42653€~02
«20471E-01 «78122E-04
1.2612 +17059E-01
+23100E-01  .31245E~03
1.4232 +38376E-01
«26067E-01 «70288E~03
1.6038 «68205€-01
.29374E-01 «12492E~02
1.8014 +10653
«32995E-01 «19512E-0Q2
240147 «15334
«36901E-01 «28085E-02
2.2424 «20861
+41071€=-01 +38208€-02
2.4835 27231
+45487E-01 «49875€-02
3.0023 . 42489
+54989E-01 «77821E-02
3.5649 «61079
+65293E-01 «11187€E-01
441659 82967
«76302E-01 «15196E-01
4.8008 1.0811
«87930E~01 +19801E~01
544655 1.3647
«10010 +249G95E-01
6.1562 1.6798
11275 «30767E-01
7.6027 244025
«13925 +44003E-01
9.1171 3.2438
«16699 «59412E~01
10,630 64,1977
19561 «76084E-01
12.274 9.2574

$ 22481 «96293E-01
13.888 6.4155
25433 11750

«1832E~0}

SEA WATER

EXACT APPROX
1.,2395 «20474E-02
+22702E-01 «37499E-04
1.5756 +12795€=01
.28858E~01 +23435€E-03
2.1599 +51162E-01
2.,7831 «11505
+50975E-01 +21072€-02
3.4400 «20436
«63006E~01 +37430€~02
4.1246 «31398
«75544E-01 +58422E-02
4.6316 45873
«88494E-01 +84020E-02
5.5567 «62344
10178 +11419E-01
642963 «81286
«11532 +14888E-01
7.80064% 1.2648

. 14298 «23165E-01
9.3416 1.8119
«17110 «33187E-01
10.88¢6 2.4514
+19939 «44898E-01
12.429 3.1795
22704 «58235€6=-01
13.959 3.9925
25567 «73126E-01
15,470 4.8860
28335 «89490E-01
18.414 6.8949

« 33727 12628
21.228 9.1646
38880 «16786
23.892 11.650
43760 21337
26.398 14.302
43350 . 26195
28.742 17.073
+52643 31271

BINOMIAL

EXACT

1.0926
+20011E-01

142661

«23189€-01
1.6239
«23744E=0]
240590
+37712E-01
2.5600
«+46088E-01
3.1183
«57114E-01
3.7267
«68256E~01
4,3788
«80200E-01
5.0691
«92844E-01
65447
«11987
8.1186
14870
9.7613
.17878
11.448
«20968
13.159
024101
14,875
«272435
18.272
«33467
21554
039477
2446064
145173
27.570
«50497
30.258
«55419

THE SECOND LINE IS THE RECEIVED POWER (FOR UNIT INCIDENT POWER)

1€




G
010
<025
+050
075
«100
125
«150
«175
+200
+ 250
«300
«350
400
«450
+ 500
«600
«700
«800
«900

1,000

THE FIRST LINE IS THE AMPLIFICATION FACTOR,

OPTICAL THICKNESS, TAU = 10.0

GAUSSIAN

EXACT APPROX
1.66482 «66078

+ 74828E~04 «30000E-04
8.6159 4.1296
«39116E-03 «18748E-03
25.201 164514
+11441E-02 «74972E-03
52.616 37.138
«23888E-02 «16861E=-02
90.753 65.980
+41202E-02 +29955E~-02
139.38 103.01
+b3278E-02 +46765E-02
198.33 148,18
«90040E-02 «67273E-02
267.43 201, 44
«12141E-01 «91454E-02
346450 262.74
«15731€-01 +11928E-01
533.78 409.15
+24234E-01 +18575E-01
758449 586,76
+364435E-01 +26639E-01
1018.7 794.78
«46251€E-01 +36083€-01
1312.5 1032.3
+59589E-01 « 46866E-01
1637.7 1298.13
« 74350£-01 +58942€E~01
1991.9 1591.6
«90432E-01 «72257€-01
2778.2 2254 .9
«12613 +10237
3652.2 3011.2
»16581 «13671
4594,5 3847.9
20859 17469
558643 4751.7
25362 «21573
6609.6 5706.9
«30007 «25918

TRANSMITTANCE =

EXPONENTIAL

EAACT APPROX
1.1333 «11013
«51453E-04 +«50000E-05
2.0765 «68832
«94274E-04 «31250€E~04
7.1070 2+7531
13.436 6.1941
«60998E~03 +28121E-03
21,204 11.010
«96266E-03 +49988E~03
31.087 17.201
«14113E-02 «78094E-03
43,167 24,766

+ 19598€E-02 «11244E-02
57.393 33,702
«26056E-02 +15301E~02
73.724 46,009
2 33471€-02 «19980€E-02
112.59 68,725
«51116E-02 .31201E-02
159.59 98.896
+72454E-02 «44899E-02
214456 134,50
«97409E-02 «61063E-02
277.33 175.51
«12591E-01 «79681E-02
347475 221.89
«15788E-01 «10074E-01
425.63 273.62
«19323E-01 +12422E-01
603,05 392.93
«27378E-01 +17839E-01
808.09 533.C9
«36687E-01 «24202E-01
1039.2 693.69
«47178E-01 «31493E-01
1294,.6 874.25
«58777€-01 «39691£-01
1572.8 1074.2
+«T1407€-01 «48771E-01

+4540E-04

SEA WATER

EXACT APPROX
2.2419 «33039
«10178€-03 «15000E-04
845240 2.0649
+38699E-03 +93746E-04
254702 842584
+11669E-02 «37493E-03
51.115 18.577
+23206E-02 +B84339E-03
85,476 33.015
«38806E-02 «14989E-02
128442 51.564
+58301E-02 «23410E-02
179.57 T4.214
«81526E-02 «33693€-02
238463 100.95 .
+10834E-01 +45832E-02
305429 131.76
+138C0E-01 »59820€~02
460427 205.53
220896€-01 «93312€-02
642.28 295,36
29160E-01 «1340G6E-01
8649.20 401.04
+38553E-01 +18207€-01
1078.9 522434
«48983E-01 2« 23714E~01
1329.5 658.99
+60359E-~01 +29918E-01
1599.0 810.70

+ 72594E-01 +36806E-01
2187.4 1157.9
«99310E-01 «52568E-01
2830.6 1560.9
12851 «70864E-01
3515.9 2016.2
.15962 +91536€-01
423244 252040
«19215 e 11441
4970.1 3068.1
22504 213929

THE SECOND LINE IS THE FECEIVED POWER

(FOR

BIMOMIAL

EXACT

1.6767
«76123E-C4
7.4024
«33607€-C3
22560
10262802
46,385
+21059E-C2
794355
+ 36045E-C2
121.37
«55103€-02
172.12
s 731423-C2
231646
«10508:5-01
299.15
«13581E-01
453.:¢
«20232€E-Cl
649453
«29438E-C1
869.27
«39465€E-01
1116.1
«5CL£T72E-C1
1388.1
«63020£-01
1683.2
s 76316E-01
2334.3
10598
3053.2
«13361
3824,12
17252
4e33.1
1226
PRSI

$2431¢

UNIT INCISOINT Flaid)

[43
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